RADIATIVE HEAT TRANSFER: NO TEMPERATURE
JUMP AT THE MEDIA BOUNDARY

Yu. P. Konakov UDC 536.3

Analyzed is the problem of radiative heat transfer in a plane layer of a gray medium. I is
found that in media where kL > 1 there is no jump of molecular temperature at the boundary

surfaces.

A study of problems concerning the radiative mode of heat transfer is generally fraught with serious
mathematical difficulties. Significant simplifications are possible with models of an optically dense medi-
um, based on the Rosseland approximation. The use of such a model for an analysis of the interaction
between radiation and a reflecting surface leads to incorrect results, however, especially for media with
a moderate or a weak absorption.

A definite improvement can be achieved by using a Rosseland model together with the hypothesis of
a temperature jump at the boundary surface, this hypothesis having recently received wide recognition
[1, 5]. & becomes relatively simple to determine the thermal radiation flux on this basis, but to calculate
the temperature field, especially near the boundary surface, on the basis of a temperature jump is entirely
impossible.

The inconsistency of the said hypothesis will be demonstrated here on the example of radiative heat
transfer in a plane layer of a gray medium with a strong or a moderate absorption (kL > 1).

The method of adjoint asymptotic expansions [2], which has been recently developed in fluid mechan-
ics, can be successfully applied to problems of radiative heat transfer in gray and in selective media.

This method yields expressions describing the intensity distribution in the boundary layer and far
away from it, and by adjugation one can find a uniformly applicable expression for the radiation flux.

It will be assumed that the surfaces bounding the plane layer have only two properties: transmittivity
and reflectivity. The ambient media on both sides of the plane layer have different temperatures Ty and
T, respectively. Those boundary surfaces receive external radiation not necessarily in equilibrium with
its medium (Fig. 1).

We will assume further that 1) the boundary surfaces are gray, and have diffusive properties, 2) the
hypothesis of local thermodynamic equilibrium is applicable, 3) the refractive index of the media is inde-
pendent of the frequency and equal to unity, and 4) the radiation is one-dimensional.

The intensity field of the given layer is described by equations
art

em =—I"+B(x); 0<m<]1,
a)
dr-

=—I"+B(x) —1<m<0

and the boundary conditions

=0, It =1I%0), @)
x=L,  I"=IL).
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Fig. 1. Schematic diagram of the problem.

Tig. 2. Emissivity profile of a plane layer of a gray medium with
kL = 3 and Ry = Ry, according to formula (20): 1) Ry =Ry = 0, 2)
Ry = Ry = 0.9; A = [B®)—B@L)]/[B(©)—B(L)].

Considering that & <1 in optically dense media, one may seek the solution to these equations in the
form of such asymptotic series (outer expansions):

I =1 + el el 4. )

Im e Iy del7 4 ety 4

Inserting these series into (1) yields the unknown functions. As a result, we have
1*:]":B(x)-smd£ -+ O (&), 4)
dx

It should be emphasized that function IT, determined by series (4), does not satisfy its boundary con-
ditions at x = 0. Obviously, such a series is unsuitable near this boundary (inhomogeneity region). The
same applies to the properties of series (4) for function I™ near the boundary x = L.

Such a situation arises when the derivative drops out in the zeroth approximation, after series (3)
are inserted into Eq. (1).

We will now search for functions I and I~ uniformly applicable in the inhomogeneity region. For
this purpose, we change the variables and their functions in (1) as follows

Xp= 2oy Xy = LZX D I ) =T X

(5)
1‘(8, X) = .I_(E, X.z)

Equations (1) will now be rewritten as

N
m Y BeXy),
’ (6)
dJ” -
= J7 4+ BeX,).
m dXZ = ( 2)

The boundary conditions remain the same.

We will seek the solutions to these equations in the form of the following asymptotic series (inner
expansions):
Tt I el e .

JT=Jy +ed] +edy ...
Considering that
B(eX,)=B0)- B (0)Xe+ ...,
BeX,)=B(L)—B{(L)Xe+...,

®)
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with the prime sign denoting a derivative with respect to x, we can insert the inner expansions into the
corresponding equations (6) and boundary conditions (2), and thus find the unknown functions there:

J* = B(0) + [I"(0) — BO)] exp (— {—‘n-) -

+ amB'(O)[ﬁ- — 1+ exp (~ 3-9_)] & 0.63);
m m
=B+ U (W—B(L) exp X2 @
m
— emB/(L) [ﬁ +1—exp ﬁ} + 0.
m m
Here B(0) and B(L) denote the emission power density of a black body at the respective layer bound-

aries.

These expressions describe accurately enough the radiation field near the respective boundary
surfaces, i. e., where the outer expansions (4) are inoperative,

We will now use the method of additive superposition [2] for a composite expansion uniformly appli~
cable over the given region:

I* = B (%) — emB'(x) + [I*(0) — B (0)] exp (~ 5‘;)

+ emB'(0) exp ( ) 10,

X
em

I~ = B(x)— emB'(x) - [I"(L) — B(L)] exp (

)

4+ 0 (&%). (10)

em

L—x

- emB’(L)exp
em

Both I7(0) and I~(L) are found from the balance of radiant energy at the boundary surfaces. Defining
the radiation flux as
1 -

1
g =q"—q =2n § ml*dm — 2n 3 ml~dm, 1)
0 0

one can also write the equalities
g7 (0) = nl*(0) = n (1 — R) [y + Rig™(0);
g (L) =al"(L) = n(l — R) I, + Ryg*(L).

I it is assumed that the region affected by a boundary surface (the boundary layer) extends from the
wall through a distance at which the exponential terms in expressions (10) become negligible, then, with
the boundary layers not contiguous, ¢~(0) and g™ (L) can be determined from the outer expansions (3):

(12)

g7(0) = %B(0) + %‘ B(0),

(13)
gH(L) = nB (L) %:_ B(L).
After inserting (13) into (12), we have
I0) = (1— R) I, + RBO) + — R,B(0),
3k 14)

I"(L) = (1— Ry I, + R,B(L) — 327, R,B'(L).

Equalities (10), (11), and (14) yield an expression for a one-dimensional radiation flux through a
plane layer of a medium:
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TABLE 1. Dimensionless Radiation Flux

Ir
T B(0)—~B(L)]
kL R . . " -
according | according |according to
to [3] to [4] formula (21)
0 0,916 0,916 0,833
0.1 0,1 0,761 0,762 0,697
’ 0,5 0,330 0,324 0,301
0,9 0,052 0,0523 0,0492
0 0,553 0,553 0,533
0,1 0,493 0,494 0,474
1,0 0,5 0,265 0,262 0,250
0.9 0,050 0,0505 0.0476
0 0,109 0,117 0,116
10 0 0,1 0,107 0,113 0,113
’ 0,5 0,090 0,0945 0,0930
0,9 0,038 0,0376 0,0360

2 ]
9 = 2 (1= R) [, — BO)] + -~ RBO) | Ey (k1)

| 2 i)
— 2= 1(1—1?2) U —B(L)] — - RB(1)

47 2m
— — B'(x) -+ = B(0) E,(kx) --
3% (x) . (0) Ey(x)

J

Ey k(L — x)]

B BBk — 1+ 0@

This expression differs from the well known Rosseland formula for a radiation flux through optically
dense media by a few extra terms which account for the effects of boundary surfaces and of external ra-

diation.

Steady-state heat radiation is described by the equation

.
dx

(16)

We will consider only the case where the external radiation fluxes I, and I, are in equilibrium with

their respective media. Then

[1=B(O):%T4; I,=B(L)= 2Tt
k11

17

Expressions (15)-(17) yield an equation which describes the radiation field in a plane layer of a gray

medium:

4
3k

B(x) = — - RB(O) Eylr) + - RB (L) Efe(L— )]

(18)

— 2nB'(0) Eyfkx) + 2aB'(L) Eylk (L — X)].

Such a problem, when formulated in terms of a model of an optically dense medium (in the Rosseland

approximation), reduces to Eq. (18) without the right-hand side.

As a consequence, errors are incurred

in the calculation of the temperature field near the surface during heat radiation.

Equation (18) must be solved for the boundary conditions

)
x=0, BO)= 2T x=L, Bly=—Ts.
e

The solution is written as

Ry

(19)

b 4

R,

B(x)—B(L) :C{i E4(kx)———3—
B(0)— B(L) 2 1—R, 2 1— R,
9_ Eg(kx) _i Elk(L—x)1 | ik L
Y T—R, 4 1—R, 4 (
9
1 Rty
T TR,

E k(L — )]

— %)

(20)
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where

' 1
C = % - .
ABO—B@y 1L _1_ I 1T 3, &)
4

6 1—R ' 16 1—R,

For comparison, we have tabulated values of the dimensionless radiation flux according to formula
(21) and according to data in [3] and {4]. As expected, formula (21) becomes less accurate at lower values
of the product kI.. The exact solution is approached closely at moderate and large values of kL.

An emissivity profile layer with kI = 3 and with various reflectivities of the boundary surfaces is
shown in Fig. 2. The distribution of molecular temperature, uniquely related to the emissivity of the me-
dium, is continuous everywhere within the layer — including its boundaries.

A Rosseland model is valid for a region far away from the boundary, separated from it by a distance
equal to at least the mean-free-path length of a photon [5]. Combining rexpressions (4) and (11) will lead to
to the same conclusion. Consequently, the well known Rosseland formula for a radiation flux becomes
inoperative near a boundary surface, as does the external expansion (4).

Heat radiation near a boundary surface does not follow the laws of an optically dense medium. Ex-
pression (15) contains exponential integrals which account for boundary effects. Their contribution becomes
more significant with weaker absorption in the layer,

The presence of these integrals is a consequence of the inner expansions (9), which describe the
transmission of radiant energy near a boundary at distance from it equal to several mean free paths of a
photon. An unjustified extension of the Rosseland model to the boundary region has led to the erroneous
conclusion concerning a temperature jump during radiative heat transmission through a thermally noncon-~
ductive medium. An analysis by the method of adjoint asymptotic expansions shows, on the other hand,
that no such jump of molecular temperature occurs at the boundary.

The balance of radiant energy at a boundary surface, as derived in [6], establishes only a jump of
radiation temperature but not of molecular temperature.

The results presented here are valid for media where kL > 1.

NOTATION
| S are the radiation intensities along the x-axis in the positive and in the negative direction
respectively;
m =cos 6;
Ry, Ry are the reflectivities of the two boundary surfaces;
L is the layer thickness;
k is radiative absorptivity;
B&) = o/7 T x) is the emissivity of a black body;
T is the temperature;
Ep x) is the exponential integral.
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